EKSPRESI GEN
Salah satu fungsi dasar yang harus dijalankan oleh DNA sebagai materi genetik adalah fungsi fenotipik. Artinya, DNA harus mampu mengatur pertumbuhan dan diferensiasi individu organisme sehingga dihasilkan suatu fenotipe tertentu.
Fenotipe organisme sangat ditentukan oleh hasil interaksi protein-protein di dalam
sel. Setiap protein tersusun dari sejumlah asam amino dengan urutan tertentu, dan setiap asam amino pembentukannya disandi (dikode) oleh urutan basa nitrogen di dalam molekul DNA. Rangkaian proses ini, mulai dari DNA hingga terbentuknya asam amino, dikenal sebagai
dogma sentral biologi molekuler.
dogma sentral biologi molekuler.
Perubahan urutan basa di dalam molekul DNA menjadi urutan basa molekul RNA dinamakan transkripsi, sedangkan penerjemahan urutan basa RNA menjadi urutan asam amino suatu protein dinamakan translasi. Jadi, proses tanskripsi dan translasi dapat dilihat sebagai tahap-tahap ekspresi urutan basa DNA. Namun, tidak semua urutan basa DNA akan diekspresikan menjadi urutan asam amino. Urutan basa DNA yang pada akhirnya menyandi urutan asam amino disebut sebagai gen. Dengan demikian, secara kimia gen adalah urutan basa nitrogen tertentu pada molekul DNA yang dapat dieskpresikan melalui tahap-tahap transkripsi dan translasi menjadi urutan asam amino tertentu.
Tahap-tahap transkripsi
Transkripsi berlangsung dalam empat tahap, yaitu pengenalan promoter, inisiasi, elongasi, dan teminasi. Masing-masing akan dijelaskan sebagai berikut.
1. Enzim RNA polimerase mengikat untai DNA cetakan pada suatu daerah yang mempunyai urutan basa tertentu sepanjang 20 hingga 200 basa.
2. Setelah mengalami pengikatan oleh promoter, RNA polimerase akan terikat pada suatu tempat di dekat daerah promoter, yang dinamakan tempat awal polimerisasi. Nukleosida trifosfat pertama akan diletakkan di tempat ini dan sintesis RNA pun segera dimulai.
3. Selama sintesis RNA berlangsung RNA polimerase bergerak di sepanjang molekul DNA cetakan sambil menambahkan nukleotida demi nukleotida kepada untai RNA yang sedang diperpanjang.
4. Molekul RNA yang baru saja selesai disintesis, dan juga enzim RNA polimerase, segera terlepas dari untai DNA cetakan begitu enzim tersebut mencapai urutan basa pengakhir (terminasi).
Macam-macam RNA
Transkripsi DNA menghasilkan molekul RNA yang kemudian akan mengalami diferensiasi struktur sesuai dengan fungsinya masing-masing. Kita mengenal tiga macam RNA, yaitu
1. RNA duta atau messenger RNA (mRNA), yang mempunyai struktur linier kecuali bagian ujung terminasinya yang berbentuk batang dan kala (Gambar 10.3). Molekul Mrna membawa urutan basa yang sebagian di antaranya akan ditranslasi menjadi urutan asam amino. Urutan basa yang dinamakan urutan penyandi (coding sequences) ini dibaca tiga demi tiga. Artinya, tiap tiga basa akan menyandi pembentukan satu asam amino sehingga tiap tiga basa ini dinamakan triplet kodon. Pada prokariot bagian mRNA yang tidak ditranslasi terletak di depan urutan penyandi (disebut pengarah atau leader) dan di antara dua urutan penyandi (disebut spacersequences atau noncoding sequences). Sementara itu, pada eukariot di samping kedua bagian tadi ada juga bagian di dalam urutan penyandi yang tidak ditranslasi.
Bagian inilah yang dinamakan intron seperti telah dijelaskan di atas. Molekul mRNA pada prokariot sering kali membawa sejumlah urutan penyandi bagi beberapa polipeptida yang berbeda. Molekul mRNA seperti ini dinamakan mRNA polisistronik. Dengan adanya mRNA polisistronik, sintesis beberapa protein yang masih terkait satu sama lain dapat diatur dengan lebih efisien karena hanya dibutuhkan satu sinyal. Pada eukariot hampir tidak pernah dijumpai mRNA polisistronik.
2. RNA pemindah atau transfer RNA (tRNA), yang strukturnya mengalami modifikasi hingga berbentuk seperti daun semanggi. Seperti halnya struktur ujung terminasi mRNA, struktur seperti daun semanggi ini terjadi karena adanya urutan palindrom yang diselingi oleh beberapa basa (Gambar 3). Pada salah satu kalanya, tRNA membawa tiga buah basa yang komplemeter dengan triplet kodon pada mRNA . Ketiga basa ini dinamakan antikodon. Sementara itu, pada ujung 3’-nya terdapat tempat pengikatan asam amino tertentu. Pengikatan yang membentuk molekul aminoasil-tRNA ini terjadi dengan bantuan enzim aminoasil-tRNA sintetase. Dalam hal ini gugus hidroksil (OH) pada ujung 3’ tRNA terikat sangat kuat dengan gugus karboksil (COOH) asam amino. Macam asam amino yang dibawa ditentukan oleh urutan basa pada antikodon. Jadi, ada beberapa macam aminoasil-tRNA sesuai dengan antikodon dan macam asam amino yang dibawanya.
3. RNA ribosomal atau ribosomal RNA (rRNA), yang strukturnya merupakan bagian struktur ribosom. Lebih kurang separuh struktur kimia ribosom berupa rRNA dan separuh lainnya berupa protein. Molekul rRNA, dan juga tRNA, dapat dikatakan sebagai RNA struktural dan tidak ditranslasi menjadi asam amino/protein. Akan tetapi, mereka adalah bagian mesin sel yang menyintesis protein.
Translasi
Bila dibandingkan dengan transkripsi, translasi merupakan proses yang lebih rumit karena melibatkan fungsi berbagai makromolekul. Oleh karena kebanyakan di antara makromolekul ini terdapat dalam jumlah besar di dalam sel, maka sistem translasi menjadi bagian utama mesin metabolisme pada tiap sel. Makromolekul yang harus berperan dalam proses translasi tersebut meliputi
1. Lebih dari 50 polipeptida serta 3 hingga 5 molekul RNA di dalam tiap ribosom
2. Sekurang-kurangnya 20 macam enzim aminoasil-tRNA sintetase yang akan mengaktifkan asam amino
3. Empat puluh hingga 60 molekul tRNA yang berbeda
4. Sedikitnya 9 protein terlarut yang terlibat dalam inisiasi, elongasi, dan terminasi polipeptida.
Tiap ribosom mempunyai dua tempat pengikatan tRNA, yang masing-masing
dinamakan tapak aminoasil (tapak A) dan tapak peptidil (tapak P). Molekul aminoasil tRNA yang baru memasuki ribosom akan terikat di tapak A, sedangkan molekul tRNA yang membawa rantai polipeptida yang sedang diperpanjang terikat di tapak P.
Gambaran penting sintesis protein adalah bahwa proses ini berlangsung dengan
arah tertentu sebagai berikut.
1. Molekul mRNA ditranslasi dengan arah 5’→ 3’, tetapi tidak dari ujung 5’ hingga ujung 3’.
2. Polipeptida disintesis dari ujung amino ke ujung karboksil dengan menambahkan asam-asam amino satu demi satu ke ujung karboksil. Sebagai contoh, sintesis protein yang mempunyai urutan NH -Met-Pro- . . . -Gly-Ser-COOH pasti dimulai dengan metionin dan diakhiri dengan serin.
Kode genetik
Penetapan triplet kodon pada mRNA sebagai pembawa informasi genetik atau kode genetik yang akan menyandi pembentukan suatu asam amino tertentu berawal dari pemikiran bahwa macam basa nitrogen jauh lebih sedikit daripada macam asam amino. Basa nitrogen pada mRNA hanya ada empat macam, sedangkan asam amino ada 20 macam. Oleh karena itu, jelas tidak mungkin tiap asam amino disandi oleh satu basa. Begitu juga, kombinasi dua basa hanya akan menghasilkan 4 atau 16 macam duplet, masih lebih sedikit daripada macam amino yang ada. Kombinasi tiga basa akan menghasilkan 4 atau 64 triplet, melebihi jumlah macam asam amino. Dalam hal ini, satu macam asam amino dapat disandi oleh lebih dari satu macam triplet kodon.
Sifat-sifat kode genetik
Kode genetik mempunyai sifat-sifat yang akan dijelaskan sebagai berikut.
1. Kode genetik bersifat universal. Artinya, kode genetik berlaku sama hampir di setiap spesies organisme.
2. Kode genetik bersifat degenerate atau redundant, yaitu bahwa satu macam asam amino dapat disandi oleh lebih dari satu triplet kodon. Sebagai contoh, treonin dapat disandi oleh ACU, ACC, ACA, dan ACG. Sifat ini erat kaitannya dengan sifat wobble basa ketiga, yang artinya bahwa basa ketiga dapat berubah-ubah tanpa selalu disertai perubahan macam asam amino yang disandinya. Diketahuinya sifat wobble bermula dari penemuan basa inosin (I) sebagai basa pertama pada antikodon tRNA ragi, yang ternyata dapat berpasangan dengan basa A, U, atau pun C. Dengan demikian, satu antikodon pada tRNA dapat mengenali lebih dari satu macam kodon pada mRNA.
3. Oleh karena tiap kodon terdiri atas tiga buah basa, maka tiap urutan basa mRNA, atau berarti juga DNA, mempunyai tiga rangka baca yang berbeda (open readingframe).
Pengaturan Ekspresi Gen
Pengaturan ekspresi gen dapat terjadi pada berbagai tahap, misalnya transkripsi, prosesing mRNA, atau translasi. Namun, sejumlah data hasil penelitian menunjukkan bahwa pengaturan ekspresi gen, khususnya pada prokariot, paling banyak terjadi pada tahap transkripsi. Mekanisme pengaturan transkripsi, baik pada prokariot maupun pada eukariot, secara garis besar dapat dibedakan menjadi dua kategori utama, yaitu (1) mekanisme yang melibatkan penyalapadaman (turn on and turn off) ekspresi gen sebagai respon terhadap perubahan kondisi lingkungan dan (2) sirkit ekspresi gen yang telah terprogram (preprogramed circuits).
Daftar pustaka
Susanto, A.H (2002) Bahan Ajar Genetika Dasar, Fakultas Biologi UNSOED,
Purwokerto